Package: huxtableone 0.4.4

Robert Challen

huxtableone: Descriptive Tables for Observational or Interventional Studies

Generating tabular summaries of data in a format suitable for reporting in journal articles is fiddly and slows down more detailed analysis. Comparing two populations with respect to an intervention, and reporting it is a task that can be largely automated.

Authors:Robert Challen [aut, cre]

huxtableone_0.4.4.tar.gz
huxtableone_0.4.4.zip(r-4.5)huxtableone_0.4.4.zip(r-4.4)huxtableone_0.4.4.zip(r-4.3)
huxtableone_0.4.4.tgz(r-4.5-any)huxtableone_0.4.4.tgz(r-4.4-any)huxtableone_0.4.4.tgz(r-4.3-any)
huxtableone_0.4.4.tar.gz(r-4.5-noble)huxtableone_0.4.4.tar.gz(r-4.4-noble)
huxtableone_0.4.4.tgz(r-4.4-emscripten)huxtableone_0.4.4.tgz(r-4.3-emscripten)
huxtableone.pdf |huxtableone.html
huxtableone/json (API)

# Install 'huxtableone' in R:
install.packages('huxtableone', repos = c('https://ai4ci.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/ai4ci/huxtableone/issues

Pkgdown site:https://ai4ci.github.io

Datasets:

On CRAN:

3.30 score 23 exports 39 dependencies

Last updated 16 days agofrom:6b92dd631e (on 0.4.4). Checks:4 OK, 4 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 03 2025
R-4.5-winOKFeb 03 2025
R-4.5-macOKFeb 03 2025
R-4.5-linuxOKFeb 03 2025
R-4.4-winNOTEFeb 03 2025
R-4.4-macNOTEFeb 03 2025
R-4.3-winNOTEFeb 03 2025
R-4.3-macNOTEFeb 03 2025

Exports:%>%as_t1_shapeas_t1_signifas_t1_summaryas_varscompare_missingcompare_outcomescompare_populationcount_tablecut_integerdescribe_datadescribe_populationexplicit_naextract_comparisonextract_unitsformat_pvalueget_footer_textgroup_comparisonlabel_extractormake_factorsremove_missingset_labelsset_units

Dependencies:assertthatbackportsbase64encbinombroomcachemclicommonmarkcpp11digestdplyrfansifastmapforcatsgenericsgluehtmltoolshuxtablejsonlitelifecyclemagrittrmemoisenortestpillarpkgconfigpurrrpwrR6rlangstringistringrsystemfontstibbletidyrtidyselectutf8vctrswithrxml2

huxtableone: Configuration

Rendered fromconfiguration.Rmdusingknitr::rmarkdownon Feb 03 2025.

Last update: 2025-02-03
Started: 2022-10-17

huxtableone: Getting started

Rendered fromhuxtableone.Rmdusingknitr::rmarkdownon Feb 03 2025.

Last update: 2025-02-03
Started: 2025-02-03

Readme and manuals

Help Manual

Help pageTopics
Convert a 't1_summary' object to a 'huxtable'as_huxtable.t1_shape
Convert a 't1_signif' S3 class to a huxtableas_huxtable.t1_signif
Convert a 't1_summary' object to a 'huxtable'as_huxtable.t1_summary
Summarise a data setas_t1_shape
Compares the population against an interventionas_t1_signif
Summarise a populationas_t1_summary
Reuse tidy-select syntax outside of a tidy-select functionas_vars
A list of columns for a test casebad_test_cols
Compares missing data against an intervention in a summary tablecompare_missing
Compares multiple outcomes against an intervention in a summary tablecompare_outcomes
Compares the population against an intervention in a summary tablecompare_population
Group data count and calculate proportions by column.count_table
Cut and label an integer valued quantitycut_integer
Default table layout functionsdefault.format
Describe the data types and consistencedescribe_data
Describe the population in a summary tabledescribe_population
A copy of the diamonds datasetdiamonds
Make NA values in factor columns explicitexplicit_na
Get summary comparisons and statistics between variables as raw data.extract_comparison
Extracts units set as dataframe column attributesextract_units
Format a p-valueformat_pvalue
Get footer text if availableget_footer_text
Extract one or more comparisons for inserting into text.group_comparison
Extract labels from a dataframe column attributeslabel_extractor
Convert discrete data to factorsmake_factors
A copy of the diamonds datasetmissing_diamonds
Missing not at random 2 class 1000 itemsmnar_two_class_1000
A multi-class dataset with equal random samples in each classmulti_class_negative
A single-class dataset with 100 items of random dataone_class_test_100
A single-class dataset with 1000 items of random dataone_class_test_1000
Remove variables that fail a missing data test from modelsremove_missing
Set a label attributeset_labels
Titleset_units
A list of columns for a test casetest_cols
A two-class dataset with random datatwo_class_test